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ABSTRACT

Routing unsteady "mixed" flows that change in time and/or space from subcritical to
supercritical, or conversely can present numerical difficulties when using models based on the
complete one-dimensional Saint-Venant equations of unsteady flow. The National Weather Service
(NWS) has developed a model, FLDWAV, which has the capability to simulate mixed flows using a
four-point implicit, nonlinear finite-difference technique for solving the Saint-Venant equations. Via
an assortment of internal boundary conditions, the FLDWAV model can simulate time-dependent
dam breaches, time-dependent gate controlled flows, assorted spillway flows, bridge/embankment
overtopping flows, and levee overtopping and crevasse flows. FLDWAYV can simulate flows that
range from Newtonian (water) to non-Newtonian (mud/debris) which occur in a single waterway or
multiple interconnected waterways in which sinuosity effects are considered, and flows that occur in
expansive floodplains that may be compartmentalized by dikes and elevated roads. The mixed flow
algorithm within FLDWAYV is based on the concept of not requiring the solution of the Saint-Venant
equations where the flow passes from supercritical to subcritical or conversely. Where and when this
occurs, appropriate external boundary equations, i.e., critical flow or depth, are used; this divides
the total routing reach into two or more sub-reaches wherein only subcritical or supercritical flow
occurs. An example is presented illustrating the FLDWAV model’s routing of a dam-break flood
wave exhibiting the condition of mixed flow in a nonprismatic channel with an irregular bottom slope
and further complicated by a moving hydraulic jump subjected to variable backwater conditions.

INTRODUCTION

Flood routing or unsteady flow simulation is an essential tool for flood forecasting and
engineering design/analysis of hydraulic structures. A generalized flood routing model, FLDWAYV,
(Fread, 1985; Fread and Lewis, 1988) has been developed by the National Weather Service (NWS).
It was developed to replace two widely used NWS models, DWOPER (Fread, 1978) and DAMBRK
(Fread, 1985, 1988), since it will utilize their combined unsteady flow simulation capabilities, as well
as provide new hydraulic simulation features and improved user-friendly data input. The model can
be used by hydrologists/engineers for a wide range of unsteady flow applications including dam-
breach analysis and inundation mapping for sunny-day piping failures or overtopping failures due to
PMF reservoir inflows including the complexities associated with failure of two or more dams
sequentially located along a watercourse.

This paper presents a description of the governing equations of the FLDWAYV model, focusing
on the capability of the FLDWAV model to route unsteady "mixed" flows that change in time and/or
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space from subcritical to supercritical, or conversely. To avoid numerical difficulties, these nee
particular attention and algorithmic features. An example is presented of the FLDWAYV model’:
routing of a dam-break flood exhibiting the condition of mixed flow in a nonprismatic channel witt
an irregular bottom slope and complicated by a moving hydraulic jump subjected to variable
backwater from a downstream tributary inflow.

GOVERNING EQUATIONS

The governing equations of the FLDWAYV model are: (1) expanded one-dimensional equation:
of unsteady flow originally derived by Saint-Venant; (2) an assortment of internal boundary equation:
of flow through one or more flow control structures located along the main-stem river and/or it:
tributaries; and (3) external boundary equations of known upstream/downstream discharges or wate
elevations which vary either with time or each other.

Expanded Saint-Venant Equations:

An expanded form of the Saint-Venant equations of conservation of mass and momentum
consist of the following:

dQ/ax + ds(A+A)/dt - q =0 (1

in which Q is discharge (flow); A is wetted active cross-sectional area; A, is wetted inactive off:
channel (dead) storage area associated with topographical embayments or tributaries; s, is a depth-
dependent channel sinuosity coefficient (Delong, 1986; Fread, 1988); q is lateral flow (inflow i
positive, outflow is negative); t is time; and x is distance measured along the mean flow-path of the
floodplain. The conservation of momentum equation is:

a(s_Q)/at + d(BQ?/A)/ax + gA(dh/ax + S;+S,+S8)+L =0 2)

in which s, is another depth-dependent sinuosity coefficient, g is the gravity acceleration constant; h
is the water surface elevation; L is the momentum effect of lateral flows (L = -qv, for lateral inflow,
where v, is the lateral inflow velocity in the x-direction; L = -q (Q/(2A) for seepage lateral
outflows; L = -q Q/A for bulk lateral outflows); S, is the boundary friction slope, i.e., S, =
|Q|Q/K? in which K is the total conveyance determined by summing conveyances of the left/right
floodplains and channel in which the channel conveyance is modified by the factor, 1/s,'?, and all
conveyances are determined automatically from the data input of topwidth/Manning n versus
elevation tables for cross sections of the channel and left/right floodplains; S, is the
expansion/contraction slope, i.e., S, = k./(2g) - d(Q/A)*/dx where k. is the expansion/contraction
loss coefficient; § is the momentum coefficient for non-uniform velocity distribution and is internally
computed from the conveyances and areas of the channel and left/right floodplains and S, is the
internal viscous dissipation slope for non-Newtonian (mud/debris) flows (Fread, 1988), i.e.,

S; = kv [(®+2)Q/(AD*") + (b+2)/2D") (7 /x)*]'® 3)

in which D=A/B where B is the wetted topwidth; « is the apparent fluid viscosity; v is the fluid’s
unit weight; 7, is the initial shear strength of the fluid; and b = 1/m where m is the exponent of a
power function that represents the fluid’s stress (7,)-rate of strain (dv/dy) relation, i.e., 7, = 7, +
x(dv/dy)™ in which v and y are the flow velocity and depth, respectively.

Internal Boundary Equations:

Locations along the main-stem and/or tributaries where the flow is rapidly varied in space and
Eqgs. (1-2) are not applicable, e.g. dams, bridges/road-embankments, waterfalls, short steep rapids,
weirs, etc. These locations require the following internal boundary equations in lieu of Egs. (1-2):

Q; - Qi.l =0 )
Q, = f(h, h,,,, properties of control structure) &)



in which the subscripts i and i+1 indicate cross sections just upstream and downstream of the
structure, respectively. For a bridge, Eq. (5) becomes:

Q =y2g CA, (h - h,, +v%2g - Ah)"? + C.LK.(h, - h)*? (6)
in which C, is the coefficient of flow through the bridge, A, is the wetted cross-sectional area of the
bridge opening, v = Q/A, Ah is the head loss through the bridge, C, is the coefficient of discharge
for flow over the embankment, L, is the length of the road embankment, h. is the elevation of the

embankment crest, and K, is a broad-crested weir submergence correction, i.e.,
K. = 1-23.8 [(hy4, - h)/(h; - h,) - 0.67]°. If the flow structure is a dam, Eq. (5) becomes:

Q = KCLM-h)? + y2g C,A h-h)"? + K,C,Lh-h)"? + Q, + Q,, = 0 Y
in which K,, C,, L, and h, are the uncontrolled spillway’s submergence correction factor, coefficient
of discharge, length of spillway, and crest elevation, respectively; K,, C,, L,, and hy are similar
properties of the crest of the dam; C,, A,, and h, are the coefficient of discharge, area, and height of
opening of a fixed or time-dependent moveable gate spillway; Q, is a constant or time-dependent
turbine discharge; and Q,, is a time-dependent dam breach flow (Fread, 1977), i.e.,

Q, = CK,[3.1 b(h;-h)*? + 2.45 z (h-h,)*?] 8)
in which b; is the known time-dependent bottom width of the breach, h; is the known time-dependent
bottom elevation of the breach, z is the side slope of the breach (1: vertical to z: horizontal), C, is a
velocity of approach correction factor, and K, is a broad-crested weir submergence correction factor
similar to K, in Eq. (6). Breach properties may be determined from empirical statistical relations
(Fread, 1988) or from breach simulation models, e.g. (Fread, 1984).

External Boundary Equations:

External boundary equations used at the upstream and downstream extremities of the waterway
may be a specified time series of discharge (a discharge hydrograph) or water elevation as in the case
of a lake level or estuarial tidal fluctuation. At the downstream extremity, the boundary equation can
be Eq. (7), an empirical rating of h and Q, or a channel control, loop-rating based on the Manning

equation in which S (the dynamic energy slope) is approximated by:

§ = (hy,~hy)/Ax - (Q"*-Q)/(gA At) - [(Q¥A)y - (Q¥A),,]/(gA Ax) ®
in which Ax is the distance between the last two cross sections at the downstream boundary.

Solution Technique:

In FLDWAV, the Saint-Venant Egs. (1-2) are solved by a weighted four-point nonlinear
implicit finite-difference technique as described by (Fread, 1985). Substitution of appropriate simple
algebraic approximations for the derivative and non-derivative terms in Eqgs. (1-2) result in two
nonlinear algebraic equations for each Ax reach between specified cross sections which, when
combined with the external boundary equations and any necessary internal boundary equations, may
be solved by an iterative quadratic solution technique (Newton-Raphson) along with an efficient,
compact, quad-diagonal Gaussian elimination matrix solution technique. Initial conditions required at
t=0 are automatically obtained via a steady flow backwater solution. A river system consisting of a
main-stem river and one or more principal tributaries is efficiently solved using an iterative
relaxation method (Fread, 1985). If the river consists of bifurcations such as islands and/or complex
dendritic systems with tributaries connected to tributaries, etc., a network solution technique is used
(Fread, 1985), wherein three internal boundary equations conserve mass and momentum at each
confluence.  Solution of this system of algebraic equations requires another special sparse-matrix
Gaussian elimination technique.



Special Features:

The FLDWAYV model has several features including: (1) a subcritical/supercritical mixed-flow
solution algorithm (details of which will follow), levee overtopping/floodplain interactions, automatic
calibration (Fread, 1985), combined free surface/pressurized flow capabilities, and automatic
selection of computational Ax and At steps.

SUBCRITICAL/SUPERCRITICAL MIXED FLOW ALGORITHM

The mixed flow algorithm automatically subdivides the total routing reach into sub-reaches
wherein only subcritical or supercritical flow occurs. The transition locations where flow changes
from subcritical to supercritical or vice versa are treated as boundary conditions thus avoiding the
application of the Saint-Venant equations to the transition flow and subsequent numerical solution
difficulties. The mixed-flow algorithm has two components, one for obtaining the initial condition of
discharge and water elevation at t=0 and another which functions during the unsteady flow solution.

The initial condition component obtains the water elevations by the following algorithm:
(1) normal and critical depths are obtained for each section -- the section is designated subcritical if
normal depth is greater than critical depth, or it is designated supercritical if normal is less than
critical after a check is made to see if upstream elevations created by a dam may drown-out upstream
supercritical depths; (2) commencing at the downstream boundary, a backwater solution proceeds
from a known elevation (dependent on the downstream boundary condition at t=0) in an upstream
direction until supercritical flow occurs or if supercritical flow occurs at the downstream boundary,
the computations proceed in the downstream direction from the normal depth at the upstream-most
section of all contiguous sections having supercritical flow; (3) when internal boundaries, such as a
dam, are encountered, the specified water elevations occurring at t=0 for each reservoir are used for
the backwater solution or if a bridge is encountered, Eq. (6), is solved iteratively until the correct
value of h; is determined from known values of Q, and h,,,.

The unsteady flow component groups contiguous sections with a Froude number less than or
equal to 0.95 into subcritical sub-reaches and those with a Froude number greater than or equal to
1.05 into supercritical sub-reaches. Those sections with Froude numbers between 0.95 and 1.05 are
considered critical sections. However, critical sections that are surrounded by subcritical sections are
grouped with a subcritical sub-reach, while critical sections amongst supercritical sections are
grouped with a supercritical sub-reach. The upstream and downstream limits of the
subcritical/supercritical reaches are noted and used to determine the range over which the Saint-
Venant finite-difference equations are applied. During a At time step, the solution commences with
the most upstream sub-reach and proceeds sub-reach by sub-reach in the downstream direction. The
upstream and downstream boundary conditions for each sub-reach are selected according to the
following algorithm: (1) if the most upstream reach is subcritical, the upstream boundary is Q(t) and
the downstream boundary is the critical flow equation since flow must pass through critical when the
next downstream sub-reach is supercritical: (2) if the most upstream reach is supercritical, the
upstream boundary is Q(t) and a rating curve Q(h), and a downstream boundary is not require for
the supercritical reach since flow disturbances created downstream of the supercritical reach c¢.. ot
propagate upstream into the supercritical reach; (3) if an inner sub-reach is supercritical, the
following equations are used for the two upstream boundary equations:

Q =Q'® (10)
h, = h'(t) (11)

in which Q'(t) is the most recently computed flow at the last cross section of the upstream subcritical
sub-reach and h’(t) is the computed critical water surface elevation of the downstream most cross
section of the upstream subcritical sub-reach; (4) if an inner sub-reach is subcritical, Eq. (10) is used
for the upstream boundary in which Q’(t) represents the computed flow at the last section of the
upstream supercritical sub-reach and the critical flow equation is used as the downstream boundary;
(5) if the most downstream sub-reach is subcritical, Eq. (10) is used for the upstream boundary



condition and the downstream boundary condition is user-specified as previously described in
"External Boundary Equations"; (6) if the most downstream sub-reach is supercritical, Egs. (10-11)
are used as the upstream boundary equations, and no downstream boundary is required. To account
for the possible upstream movement of the hydraulic jump, the following procedure is utilized before
advancing to the next time step: (1) the subcritical elevation (h,) is extrapolated to the adjacent
upstream supercritical section; (2) the sequent water surface elevation of the adjacent upstream
supercritical section is iteratively computed via the bi-section method of solving the following sequent
elevation equation:

Q¥(gA) + ZA - QU(gA) - ZA, = 0 (12)

in which z is the distance from the water surface to the center of gravity of the wetted cross section,
A is the wetted area, Q is the computed flow at the section, and the subscript (s) represents variables
associated with the sequent elevation h, while the variables with no superscript are associated with the
supercritical elevation; (3) if the sequent elevation h, is greater that the extrapolated elevation (h,),
the jump is not moved upstream; however, if h, < h,, the jump is moved upstream section by
section until h, > h.. To account for the possibility of the jump moving downstream (if it did not
move upstream), the following procedure is utilized before advancing to the next time step: (1)
starting at the most upstream section of the subcritical sub-reach, the supercritical elevation is
computed using a downwater steady flow equation similar to a backwater equation, and its sequent
elevation (h,) is computed by applying the iterative bi-section method to Eq. (12); (2) using the most
recently computed subcritical elevation (h), if h = h,, the jump is not moved downstream; however,
if h < h,, the jump is moved downstream section by section until h = h,. Possible jump movements
are not computed for cases where the flow is essentially critical in several adjacent reaches, since this
can cause some numerical difficulties.

Smaller computational distance steps (Ax) are required in the vicinity of the transition reaches
between subcritical and supercritical flow. This is particularly required both upstream and
downstream of a critical flow section to avoid numerical difficulties. Smaller Ax reaches also will
enable more accurate location of hydraulic jumps. A very convenient feature for specifying any size
computational distance step utilizing interpolated cross sections is available within FLDWAYV.

APPLICATION

The FLDWAYV model with dam-break flood generation and mixed subcritical/supercritical flow
routing capabilities is applied to the following realistic hypothetical case.

A 95-ft high earth dam is subjected to 1 ft of overtopping water which precipitates a dam-
breach. The breach is trapezoidal-shaped with an average width of 315 ft, a bottom width of 250 ft,
and a side slope of 1 vertical: 0.67 horizontal; the breach requires 0.60 hours to completely form.
The initial flow emanating from the dam is 6000 cfs. The channel downstream of the dam is
nonprismatic and is represented with 15 selected cross sections irregularly spaced along the 12-mile
downstream reach. The widths vary from cross-section to cross-section along the channel, e.g., the
maximum channel width at mile 1.0 is 1000 ft while the next section downstream at mile 1.67 has a
maximum width of 350 ft. Also, the channel bottom slope, shown in Fig. 1, varies from steeper
slopes upstream ranging between 96 and 39 ft/mile to that of the lower end of the 12-mile reach with
a slope of 2 ft/mile. A hydraulic jump occurs at mile 5.0 where the slope changes from 39 ft/mile to
2 ft/mile. A tributary enters immediately below this location with a peak flow of 50,000 cfs which
subjects the hydraulic jump to variable backwater effects and causes it to move upstream
approximately 1000 ft.

The maximum water surface elevations provided by the dam-breach flood are shown in Fig. 1.
The dam-breach flood has a peak discharge of 95,000 cfs as shown in Fig. 2. The hydrographs
produced by the FLDWAYV model for 0.01, 2.65, 4.28, 5.0, 5.1, 9.0, and 12.0 miles below the dam
are also shown in Fig. 2. Both supercritical and subcritical flows occur upstream of mile 5.0 with
subcritical flow prevailing at all locations further downstream. During high flows, the reach
upstream of mile 5.0 is entirely supercritical while the downstream portion remains subcritical.



Froude numbers range from 0.23 to 1.65. The computational time and distance steps were
0.03 hr and 0.08 to 0.35 miles, respectively. As shown in Fig. 2, the hydrograph peak attenuates as
the dam-breach flood wave propagates downstream until the added inflow of the tributary flood
causes an increase in the peak discharge at locations below mile 5.0. The increased peak then
attenuates dramatically as the combined flood wave propagates further downstream through the flat
portion of the downstream channel.
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